
P H Y S I C A L R E V I E W V O L U M E 1 3 3 , N U M B E R 3A 3 F E B R U A R Y 1 9 6 4 

Magnetization Curve at Zero Temperature for the Antiferromagnetic 
Heisenberg Linear Chain* 
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The highest and lowest energies as a function of the total spin are computed for the class of "unbound" 
states in the Bethe formalism for the linear chain of spin-J atoms with a Heisenberg exchange interaction 
between nearest neighbors. The lowest energies are used to compute the magnetization curve for the infinite 
antiferromagnetic chain in the limit of zero temperature. At zero temperature and in zero field, the magnetic 
susceptibility has the value 0.050661 g2jj?/J, where p is the Bohr magneton, g the electron g factor, and the 
interaction between neighboring spins is of the form 2/Si • S2. 

I. INTRODUCTION 

THE properties of antiferromagnetic insulators are 
often discussed on the basis of the Heisenberg 

model of exchange between neighboring atoms. Calcu
lations for two and three dimensions invariably proceed 
by means of approximations whose validity is difficult 
to judge. Hence, there is some interest in examining the 
one-dimensional case, for which a certain amount of 
progress has been made toward an exact solution. 

Bethe1 showed that the eigenvalue problem for a 
chain of N spin-| atoms with Hamiltonian 

3C—2J 2L, vi'vi^i, (i) 

Wfl= » s l f 
where S* is the spin operator for the ith. atom and / 
the "exchange integral," could be reduced to that of 
solving a set of coupled transcendental algebraic equa
tions. Using this procedure, Hulthen2 calculated the 
exact ground-state energy for an infinite antiferro
magnetic ( / > 0) chain; and des Cloizeaux and Pearson3 

have recently obtained the energies of the lowest lying 
excitations or "spin waves." 

The class C4 of "unbound" states in the Bethe for
malism is of particular interest for the antiferromagnetic 
chain, since it contains the ground state and the des 
Cloizeaux and Pearson spin waves. In this paper we 
compute (in Sec. Ill) the minimum and maximum 
energies of states in class C with a given total spin 5, as 
a function of 5. There is good reason to believe that the 
states of minimum energy in class C are also the lowest 
of all levels (for a given S) in the antiferromagnetic 
chain. Assuming this to be the case, we calculate (in 
Sec. IV) the magnetization as a function of magnetic 
field at zero temperature. 

* Supported in part by the U. S. Office of Naval Research. 
t National Science Foundation Postdoctoral Fellow. 
1 H. Bethe, Z. Physik 71, 205 (1931). 
2 L. Hulth6n, Arkiv Mat. Astron. Fysik 26A, No. 11, (1938). 
8 J. des Cloizeaux and J. J. Pearson, Phys. Rev. 128, 2131 

(1962). 
4 This notation comes from Ref. 3 and is explained in detail in 

Sec. II . 

Section II contains a summary of the Bethe formalism 
for the eigenvalue problem. A proof of the existence of 
real solutions to the Bethe equations for states in class C 
is found in Appendix A. The derivation of Hulthen's 
integral equation, upon which the work in Sec. I l l B, 
C, and D depends, is summarized in Sec. I l l A. 

The results of our computations do not agree with 
those of Ledinegg and Urban.5 The reason for this dis
crepancy is discussed in Appendix B. 

II. THE BETHE EQUATIONS 

Let EF and EAF be the largest and smallest eigen
values of the Hamiltonian (1) with / > 0 , corresponding 
to the ferro- and antiferromagnetic ground states, 
respectively: 

EF=±NJ, 
EAF=NJ$-21n2). 

(2) 

The second equation2 holds in the limit N —> °°. For a 
state with energy E, define the normalized energies6 

e=UEF-E)/JN, 

v=%(E-EAF)/JN=ln2-e. 
(3) 

With "up" and "down" defined with respect to the 
positive z axis, let ^(wi,^, • . . nr) be a state for which 
the spins nh n^ . . ., nr are down and all other spins 
are up. Any eigenstate of (1) with % component of spin 
equal to \N-r may be written as a linear combination of 
such states: 

with summation over all sets of r (distinct) indices n3: 
The eigenfunctions discussed by Bethe1 are of the 

form 

a(nh • • • ,nr) = ]£ exp il £ kppij+i £ <j>PjPi), (5) 

where the summation extends over all permutations of 
the integers 1 , 2 , . . ., r, and Pj is the image of j under 

6 E. Ledinegg and P. Urban, Acta Phys. Austriaca 6, 257 (1953). 
6 Our definition of e is smaller than that given in Refs. 1, 2, and 

3 by a factor of iV"1. 
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the P th permutation. The "wave vectors" kj (real or 
complex) satisfy the equations 

Nkj= 2TTX;+ Z 4>H J = 1,2, • • • ,r , (6) 

where the X's are integers between 0 and iV-1, and the 
$'s are defined by 

COti0yi= I (cotJfty — COt££j) , 

— 7T<<£yz<X. 

The energy of the state (5) is equal to 

e = i V - 1 E ( i -
y=l 

• COS&y) . 

(7) 

(8) 

The order of the X's associated with a state (5) 
through Eq. (6) is unimportant. Furthermore, a state 
with some X's equal to zero has the same energy and 
total spin as the corresponding state in which the zero 
X's have been eliminated.2 Hence, without loss of gen
erality we may assume that 

0 < X i < X 2 < - - - < X r < N . (9) 

By "class C" we denote either the sets {Xy} satisfying, 
in addition to (9), the restriction 

Xy+i^Xy+2, (10) 

or the eigenstates (5) corresponding to these sets. The 
importance of class C comes from the following 
properties. 

1. For each set {Xy} in class C there is a solution to 
(6) for which all the kj are real and no two are equal. 
[When two k's are equal, the state (5) vanishes 
identically.]] 

2. For a given total spin S, the state with the lowest 
energy ( / > 0 ) belongs to class C. 

Appendix A contains a rigorous proof of the first 
property, together with a general discussion of the be
havior of the solutions {kj} of (6) as a function of the 
sets {Xy}. The second property has not yet been proved, 
but it is very plausible on the basis of arguments by 
Be the1 and Orbach,7 and calculations on finite chains by 
des Cloizeaux and Pearson,3 and the author.8 

For an antiferromagnetic chain, the energy of a state 
is lowest when e [see (3)] is largest, and vice versa. Now 
by Eq. (8), e is largest, for a given r, when the kj cluster 
near the center of the interval [0,2x]. This may be 
expected, according to plausible arguments in 
Appendix A, when the Xy cluster near the center of 
[0,AT], subject to the constraint (10). Hence, for a 
given total spin S=%N-r, the state of minimum energy 
in class C should correspond to 

\i=hN-r+l, X2=Xx+2, X3=X2+2, . . ., 
\r=hN+r-l. (11) 

7 R. Orbach, Phys. Rev. 112, 309 (1958). 
8R. B. Griffiths (unpublished). 

By a similar argument, the state of maximum energy 
in class C should correspond to 

X i= l , X2=3, . . ., X r /2=r—1, 

K/^-i=N-(r-l)} X r / 2 + 2=iV~( r -3 ) , . . ., 
A r = i \ T - l . (12) 

For 5 = 0 there is only one state in class C, the anti-
ferromagnetic ground state , 

Xi—1, X2—3, X3—5, \M=N-1. (13) 

We have tacitly assumed in writing (11), (12), and (13) 
that N and r are even; minor modifications are re
quired if one or the other is odd. 

There also exist solutions of (6) for which two or 
more of the kj are not real but complex. For the case 
r = 2 , Bethe1 showed that complex k values result in a 
state (5) for which \a(nhn2)\

2 decreases exponentially 
as \fi2—ni\ increases, and thus has the form of two 
spin waves interacting to form a bound state. We shall, 
for convenience, refer to any state for which some of the 
kj are complex as a "bound" state, and to states for 
which all kj are real as "unbound" states. Some of the 
unbound states are not contained in class C, though 
Bethe's discussion indicates that these are relatively 
few in number as N becomes infinite. 

III. THE HULTHEN INTEGRAL EQUATION 

A. The Antiferromagnetic Ground State 

In the limit of large N it is reasonable to replace (6), 
(7), (8) for the set Xy given by (13) by the equations 

k(x) = 2irx+ 
J 0 

y)dy, (14) 

cot^<t>(x,y) = ^[cot^k(x)—cotik(y)~], (15) 

Jo 
[1—cos& (%)~\d%, (16) 

where Xy has been replaced by Nx and kj by k(x). 
By differentiating both sides of (14) with respect to 

x, Hulthen2 obtained an integral equation linear in the 
function dx/dk: 

dx r' 
1 = T T — + c s c 2 ( ^ ) / 

dk Jo 

2* {dx/dk')dkf 

4 + ( c o t | f c - c o t p ' ) 2 

which, by means of the substitution 

£=cot |&, 

, (17) 

(18) 
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may be rewritten in the form —dx/d£ by / (£) 9 : 
00 

/o(0 = « o « ) - / ' tf(f-u)/o.(i0A», (19) / ( f ) = go(£)- / ' K(S-v)f{v)dv, (32) 
•/ —CO ./ —« 

where 
*ot t )=(2A)( l+?)-S (20) 

iftt-»»)=(2/x)[4+(f-i») ,3-1 , (21) 

and further, with limits of integration determined by the requirement 

« = **•/ /(f)«o(f)#, (33) 

e o = k / / o ( | ) g o ( ^ . (22) ^ ,-CW+P 

(l/2)-p 

/.(l/2)+p /•« 

P=W d*=W /(iyj . (34) 
i (l/2)-p ./ - a 

For our purposes it is convenient to write Hulthen's 
solution of Eq. (19) in the form I n E c l s - ( 3 2 H 3 4 ) > o n lY t h e values of /(£) for |f| < a 

are employed, although (32) also defines /(£) for | £ | > a . 

/

°° Multiply the right- and left-hand sides of (32) by 

R(£-~ii)go(ri)dn (23a) i f ( f - f ) and integrate with respect to { from - o o to 
-°° + oo. By interchanging the order of integration on the 

= i s e c h V (23b) right-hand side, and using (27), (23a), (32), and the 
fact that /(£) = /(—£) and R(x) = R(—x), one obtains 

60=ln2, (24) the equation 
where the resolvent kernel R(x) may be written as an r00 

infinite sum, /(*) = /o ( f )+ / C«tt-i?)+iJtt+i?)]/(t?)A?. (32a) 
J a 

v J nTi . Similarly, in place of (33) and (34) one has 
oo 

or as an integral, 
v=e0-e=irl MMtiM, (33a) 

r 
R(X)=(4T)-1 tl+iy+xyytsech^TryJdy, (26) 

J —oo 

J —0 

^ = i - p = 4 / /(*)<*{.• (34a) 
and satisfies the equation a 

[Multiply both sides of (32a) by go(£) and integrate 
K(%-r))R(v-t)dv=K(%-t)-R(%~t). (27) from ~.°° t o + 0 0 / U P o n interchanging the order^of 

integration, and using (22), (23a), and (33), one obtains 
(33a). To obtain (34a), integrate both sides of (32) 

B. States of Minimum Energy from - oo to + oo.] 
The asymptotic behavior of t\ and a for large values 

For the sets of integers given by (11), the Hulthen o f a determines the magnetic susceptibility in small 
equations (14) and (16) must be replaced by magnetic fields at zero temperature, and hence we shall 

(1/2)+p examine it in some detail using Eqs. (32a)-(34a). For 
k(x) = 2irx+l\ <t>(%,y)dyy (28) l a r S e «» [t i s c l e a r l y a n excellent approximation to 

J(i/2)-P replace /o(£) [see (23b)] by exp(—§7r£) in (32a) and 
(33a), since only values of /o for £ > a are required. 

_ 1 f P
 r i . *-.• , v Even for a = 3 , the fractional error is less than 10~4. 

e~~ ^ J _ Ll™cos^(x)J^, (29) B y u g e of t M g a p p r o x i m a t i o n ^ d the function 

where p is determined by the condition ' 

hN—S=r=Np. (30) Eqs. (32a)-(34a) may be rewritten in the form 

Also, define cr by 
p(*) = <r™ / 2+ lR(x-y)+R(x+y+2a)My)dy, N 

o- = S/N=%—p. (31) J 0 (36) 

Equation (28) may be transformed by the same pro- 9 L H u k h , n (Ref> 2) ob ta ined Eq< (32)j b u t did n o t a t t e m p t 

cedure previously applied to (14); we shall denote to solve it. 
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r}=b(a)e~~™, 

o- = a(o;)e-7 r a / 2 , 

where 

./o 

/ • " 

b(a) = Tr I 
Jo 

p (#)d#, 

- ( -1 /2) IT* p (#)<£&. 

(37) 

(38) 

(39) 

(40) 

Since the kernel R(x) decreases as x~2 for large x, it 
is reasonable to suppose that the function p(x) is de
termined primarily by the first kernel in the integrand 
in (36) when a is large. One can, in fact, show (we shall 
not give the proof here) that as a becomes infinite,10 

a(a) = a o [ l + (2m)-l]+OQna/c?), 

4(a) = Jo+0(or*), 

da(a)/da=0(cr2), 

db(a)/da=0(oT2), 

(41) 

(42) 

where flo and #0 are obtained from (39) and (40) when 
p(x) is replaced by q(x), the solution to the equation 

- / . 
q(x) = e<--m*x+ / R(x-y)q(y)dy. (43) 

Equation (43) has been solved numerically11 using a 
computer program with several internal checks. We 
believe the results, 

a0=0.48394, 

Jo= U5573 
(44) 

are correct to five decimal places. Combining (37), 
(38), (41), and (44), we have, for large a or for small a, 

rj= {4.9348[1- (7ra)-l1+0(\na/a2)}<r2, (45a) 

nr2 ln( | lncx|)-
:4.9348(l-

— ) 
21n<r/ 

a2+0 
L (lno-)2 

(45b) 

I t is clear that 77 is not an analytic function of a at 
<T=0. The constant 4.9348 agrees with 7r2/2 to five sig
nificant figures, and there are certain plausible (though 
far from rigorous) arguments based on the spin-wave 
spectrum of des Cloizeaux and Pearson3 which suggest 
that the value should be 7r2/2 exactly. 

The asymptotic behavior given by (37), (38), and 
(41) is in agreement with numerical calculations of 77 
and cr for finite a (discussed below in part D), but in 

10 Capital O stands for "of the order of" in the sense used by 
E. T. Whittaker and G. N. Watson, A Course of Modern Analysis 
(Cambridge University Press, Cambridge, England, 1927), 4th 
ed., p. 11. 

11 The actual computations were carried out, purely as a matter 
of convenience, on an integral equation equivalent to (43), but 
which used the kernel K instead of R. 

disagreement with results published by Ledinegg and 
Urban,5 which we believe to be in error. For further dis
cussion, see Appendix B. 

C. States of Maximum Energy 

For a given total spin S} the states of maximum 
energy in class C are associated with sets of integers of 
the form (12). The integral equations in the limit 
N —> 00 are obtained in close analogy to the results in 
part B, so we shall omit details. Corresponding to 
Eqs. (32)-(34) one has 

/(€) = ^o(f)— / iKti-ri+K^+vWMdr), (46) 
J a 

m)g«{m, (47) 

P=[ / ( * ) # , (48) 
J a 

and, corresponding to Eqs. (32a)-(34a), 

m = M&+f R(H-v)f(v)dv, (46a) 

(47a) 
./o 

« • = * / / ( » 

Jo 
(48a) 

When a or a- is small we have 

y]/^ircrJ (49) 

whereas when a is large, and therefore p is small 

€ - | 7 T 2 p 3 (50) 

The results (49) and (50) have been confirmed by nu
merical computations. 

I t must be emphasized that the energy is a maximum 
only for states in class C In general, for a given value of 
Sy there will be states not belonging to class C with 
energies both less than and greater than the maximum 
for class C. 

D. Numerical Solutions of the 
Integral Equations 

The integral equations (32) and (46a) were approxi
mated by a set of 41 coupled linear algebraic equations 
which were solved using a Control Data Corporation 
1604 digital computer. The results are shown in Fig. 1 
where the normalized energies e and 77 [see (3)] are 
plotted as a function of ar=S/N, where S is the total 
spin of the state, and p = \ — <r« 
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or = S / N 

FIG. 1. Highest and lowest energies for states in class C as a 
function of the total spin S. The circles represent the lowest 
energies for finite chains containing 9 and 10 atoms. 

Table I contains values of a and 77 for the lower curve 
in Fig. 1. If the arguments alluded to in Sec. II are 
correct, these energies, for a given a, should not only be 
the lowest in class C, but also the lowest for all states 
in the antiferromagnetic chain. Fortunately, there are 
some independent checks on this property. 

TABLE I. The minimum energy rj of levels in class C for various 
values of <r = S/N. At zero temperature, a is proportional to the 
magnetization and 2dy)/da is proportional to the applied magnetic 
field. 

cr 

0.000000 
0.001280 
0.002407 
0.004531 
0.006218 
0.008538 
0.011728 
0.016117 
0.02216 
0.02600 
0.03050 
0.03579 
0.04200 
0.04931 
0.05789 
0.06799 
0.07986 
0.09382 
0.11020 
0.11943 
0.12943 
0.14025 
0.15194 
0.16458 

V 

0.00000000 
0.00000759 
0.00002668 
0.00009387 
0.00017608 
0.0003303 
0.0006198 
0.0011630 
0.002182 
0.002989 
0.004095 
0.005607 
0.007678 
0.010509 
0.014377 
0.019654 
0.02684 
0.03659 
0.04979 
0.05802 
0.06754 
0.07855 
0.09125 
0.10586 

dt\ 
2 — 

dar 

0.00000 
0.02362 
0.04412 
0.08235 
0.11245 
0.15349 
0.2094 
0.2855 
0.3887 
0.4534 
0.5285 
0.6156 
0.7166 
0.8333 
0.9677 
1.1220 
1.2980 
1.4975 
1.7214 
1.8425 
1.9695 
2.102 
2.240 
2.383 

cr 

0.17822 
0.19293 
0.2088 
0.2258 
0.2441 
0.2636 
0.2845 
0.2955 
0.3068 
0.3184 
0.3304 
0.3428 
0.3554 
0.3685 
0.3818 
0.3955 
0.4095 
0.4239 
0.4385 
0.4535 
0.4687 
0.4842 
0.5000 

V 

0.12262 
0.14177 
0.16357 
0.18829 
0.2162 
0.2475 
0.2823 
0.3012 
0.3209 
0.3417 
0.3634 
0.3861 
0.4097 
0.4343 
0.4598 
0.4862 
0.5135 
0.5416 
0.5706 
0.6002 
0.6306 
0.6616 
0.6931 

dr\ 
2 — 

dcr 

2.529 
2.677 
2.828 
2.977 
3.125 
3.268 
3.405 
3.470 
3.533 
3.593 
3.650 
3.703 
3.753 
3.798 
3.840 
3.877 
3.909 
3.937 
3.960 
3.977 
3.990 
3.997 
4.000 

Energies for finite chains containing iV=2, 3, 4, . . . , 
10 atoms have been computed directly from the 
Hamiltonian (l).8'12-13 The lowest energies as a function 

12 R. Orbach, Phys. Rev. 115, 1181 (1959). 
13 J. C. Bonner and M. E. Fisher (to be published). 
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of S lie above the lower curve in Fig. 1 for N=3, 5, 7, 
and 9, and below the curve for N=2, 4, 6, 8, and 10. 
Points for N= 9, 10 are shown in Fig. 1 (open and solid 
circles, respectively) and lie quite close to the com
puted curve, which should represent the limit as N 
becomes infinite. 

A strict upper bound on the minimum energy curve 
is provided by the work of Bulaevskii.14 At zero tem
perature he, in effect, finds, in a particular representa
tion, the lowest diagonal element of the Hamiltonian 
(1) in a subspace containing all states with a given z 
component of total spin. Of course, the lowest diagonal 
element must be larger than the lowest eigenvalue. The 
energy so obtained is, in our notation, 

r}B = (r2—Tr~1 cosira— (7r_1 C0S7rcr)2+ln2 —J. (51) 

A strict lower bound on the minimum energy curve 
may be obtained if we write the Hamiltonian (1) as 

5C=3C0+3Ci, (52) 
where 

3C0= 2J £ (Si'S^+SiVS^y), (53) 

N 

Xi= 2 / 1 ; 5/5*4.i», (54) 
i=l 

and the superscripts denote the x, y, and z components 
of the spin operators. The Hamiltonian (53) has been 
solved exactly15 and the minimum energy obtained as a 
function of the z component of total spin. Of course 
(54) is just the Ising Hamiltonian. The sum of the mini
mum energies for these two Hamiltonians, 

f\c— \<y\ —IT1 cos7T(7+ln2—J, (55) 

is a lower bound on the minimum energy for (1), since 
the lowest eigenvalue of the sum of two Hermitian 
matrices is larger than the sum of the lowest eigenvalues 
of the summands.16 

We therefore expect that 

VC(O)<TI(cr)<rjB(a) , (56) 

and, indeed, the values of rj in Table I lie within the 
specified bounds. For instance, at a-=0.3554 we have 

7/5=0.4103, 

7? = 0.4097, 

770=0.4089. 

For larger values of cr the bounds are even closer 
together, since rjB—yc goes to zero as (J—a)4 as <r 

14 L. N. Bulaevskii, Zh. Eksperim. i Teor. Fiz. 43, 968 (1962) 
[translation: Soviet Phys.—JETP 16, 685 (1963)]. 

15 E. Lieb, T. Schultz, and D. Mattis, Ann. Phys. (N. Y.) 16,407 
(1961); S. Katsura, Phys. Rev. 127,1508 (1962); see also Ref. 14. 

16 Pointed out, for example, by P. W. Anderson, Phys. Rev. 83, 
1260 (1951). 
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FIG. 2, The ratio rj/a2 for the states of minimum energy in 
class C as a function of 1/a. The dashed line at the left side gives 
the asymptotic behavior as of1 goes to zero. 

approaches J. These bounds are not of much value 
when a is small. 

The numerical calculations also confirm the asymp
totic behavior of rj and a for large a given by Eqs. (37)-
(42). In Fig. 2 the ratio 

b(a)/a(a)2=r)/a2 

is plotted as a function of 1/a. Results for a > 4 were 
not very accurate and have not been included in the 
graph. But there is no reason to doubt that the curve 
approaches the asymptotic limit, shown by a dotted 
line, smoothly as or1 approaches zero. 

IV. MAGNETIC MOMENT AND SUSCEPTIBILITY 
AT ZERO TEMPERATURE 

Let there be a magnetic field H along the positive z 
axis. The Zeeman energy 

3e,=a*ffE5i- (57) 

q\i H/J 

FIG. 3. The magnetization as a function of magnetic field for the 
antiferromagnetic chain at zero temperature. 

commutes with the exchange energy (1). Here p is the 
Bohr magneton, g the electron g factor, and Si* the z 
component of the ith spin. The lowest level of the chain 
with a given total spin S will have an energy 

EM(S) = E(S)~gfxHSi (58) 

where E(S) is the lowest energy in the absence of a 
magnetic field, 

E(S) = 2NJ>n(S/N)+EAF. (59) 

By V (S/N) = t] (<r) we mean the function corresponding 
to the lower curve in Fig. 1 and the values in Table I. 

Let SQ=N<TQ be the value of S for which EM(S) is a 
minimum. It is determined by setting the derivative 
with respect to S of the right-hand side of (58) equal to 
zero, with the result 

g»H/J=2i,'(po). (60) 

g/iH/J 

FIG. 4. The ratio of magnetization to magnetic field as a 
function of the field, at zero temperature. The circle at the 
left side [obtained fromj Eq. (62)] shows the ratio in the limit 
as H goes to zero. 

Here ii'(o) stands for dri/d<r; this quantity is tabulated 
as a function of a in Table I. At zero temperature, the 
free energy of the chain F is equal to EM (So), and the 
average magnetization per spin, M, is given by 

M^-N-'dF/dH^gixao (61) 

Figure 3 shows M as a function of H. As H goes to zero, 
the ratio M/H approaches a limiting value,17 the zero 
field susceptibility: 

X-0 .05066l£W. (62) 

The numerical constant in (62), a0
2/4&o, is equal to 

(27r2)-1 to five significant figures. £See the remark follow-
ing(45b).] 

The ratio M/H as a function of H is shown in Fig. 4. 
A peculiar feature of this curve is that it approaches the 
limiting value at # = 0 with infinite slope [as may be 

17 The reader may verify this using (37), (38), (41), and (42) 
to evaluate drj/da for large values of a. 
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verified by means of (41) and (42)], a result of the fact 
that 7}(<T) is not an analytic function near cr=0. 

V. CONCLUSION 

The principal results of the present paper are found 
in Fig. 1 (and Table I) which shows the upper and lower 
limits of the energies of states in class C as a function 
of the total spin of the state, in the limit N —» °°. From 
the lower limit we have computed the magnetization as 
a function of field in the limit of zero temperature. 

The magnetization curve is exact in the sense that 
we have made no approximations in treating the 
Hamiltonian (1) other than the neglect of terms which 
vanish (or are expected to vanish) as N becomes infinite 
relative to the terms retained. Nevertheless, certain 
hypotheses which enter into the Bethe formalism and 
our use thereof are, at present, supported by plausible 
arguments rather than rigorous proof. Perhaps we may 
say that the energies and magnetization curve com
puted above are "exact" in the same sense that 
HultheVs value for the ground-state energy or the des 
Cloizeaux and Pearson spin-wave spectrum are "exact." 

The problem of determining the magnetization and 
other thermodynamic quantities at low (nonzero) tem
peratures for the antiferromagnetic chain remains un
solved. (At high temperatures, the numerical results 
obtained for finite chains are probably adequate for 
most purposes.8-13) Unfortunately, if this problem is to 
be attacked within the framework of the Bethe for
malism, it appears necessary to calculate energies for 
states outside class C, a rather difficult task since the 
kj are in general complex. 
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APPENDIX A. EXISTENCE OF SOLUTIONS OF 
EQUATION (6) FOR STATES IN CLASS C 

I t is convenient to regard (6) as a nonlinear trans
formation of the vector (ki, ki, . . ., kr) into another 
vector with components 

k/^icN-iXj+N-1 E <t>(kj,h), (Al) 

where for 4>n we have written <£(£y,&z). A solution to (6) 
is a fixed point of the transformation (Al). If we at
tempted to solve (Al) by iteration, a sensible starting 
value for the kj would be 2TN~~1\J, which lies within the 
interval (0,27r). The function c/>(kj,ki) is positive for 
ki>kj and negative for kj>ki if kj and ki are real and 

fall in the interval (0,2TT). Hence the second term on the 
right side of (Al) represents an "attractive force" 
between pairs of wave vectors, whereas the term 
2irN~l\j tends to "anchor" kj near its starting position. 

When the starting values of kj and kj+\ are too close 
together, successive iteration may result in a "colli
sion": kj+i=kj. But a solution to (6) for which two k's 
coincide is trivial: The corresponding wave function (5) 
vanishes identically. A possible remedy in this situation 
is to make kj and kj+\ complex. However, condition (10) 
for states in class C ensures that the initial values of the 
kj are far enough apart to make "collisions" impossible, 
and hence one may expect a solution to (6) for which 
all the k's are real. We shall now make these intuitive 
notions more precise. 

Let V be the real r-dimensional space of vectors of 
the form (kh k2, . . ., kr) and let K be the subset of 
those vectors whose components satisfy the inequalities 

h>2irN-\ kr<2v{\-N-1), 

kj+1-kj>2wN-\ j=l, 2, . . ., f - 1 . 

The function <l>(kj,ki) [see (7)] is, in absolute value, 
less than or equal to x. I t is continuous for all kj,ki in 
the interval (0 ,2T) except at the points kj—k\. Thus, the 
transformation (Al) is continuous on the set K. The 
inequality 

kj+1
f-k/>2TN-1(\j+i-~\j)~2N-1(l>(kj1 kJ+1) (A3) 

is a consequence of the fact that the function <t>(kj,ki) 
in either the region kj<ki or the region kj>ki is mono
tone increasing in kj and decreasing in k\. 

The \j for states in class C satisfy the inequalities (9) 
and (10). This, together with the inequality (A3) and 
the properties of </> mentioned above, implies that the 
kj satisfy the inequalities (A2). In other words, the 
transformation (Al) carries the set K into itself. The 
set K is closed, convex, and bounded; and, since the 
transformation (Al) is continuous on K, there must 
exist at least one fixed point by Brouwer's theorem.18 

We have not been able to show that the solution is 
unique. 

APPENDIX B. THE LEDINEGG-URBAN 
CALCULATION 

For convenience, we enclose equation numbers from 
the paper by Ledinegg and Urban5 in square brackets, 
and transcribe the equations in our notation. They 
obtain the following asymptotic behavior for a and 77 
as a function of a for large a using Eqs. (32)-(34): 

o--0.518e<-1''2)™, [38d] 

77-0.398^-™™/^. [37] 

The result [38d] agrees with our calculations—see 
(38)} (41), and (44)—except for the numerical constant. 

18 G. T. Whyburn, Analytic Topology, American Mathematical 
Society Colloquium Publications, Vol. XXVIII (American Mathe
matical Society, New York, 1942), p. 243. 
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However, [37] is in disagreement with (37) and (41); 
in particular, the exponent in the former is half that in 
the latter. The numerical solutions to Eqs. (32)-(34) 
support (37) and (41) rather than [37]. 

Ledinegg and Urban obtain their asymptotic esti
mate as follows. The function /(£) in (32) (their 
Eq. [23]) is set equal to 

/tt) = /ott)+*tt), P4a] 
where /0(£) is the solution of (19) given by (23). They 
assume that 

|*(S)l//ott)«l, [24c] 

I. INTRODUCTION 

SPIN absorption refers to the absorption of energy 
from an oscillating magnetic field by a system of 

mutually interacting magnetic spins which occurs when
ever the frequency of oscillation is sufficiently high to 
compete with the relaxation processes tending to main
tain the internal statistical equilibrium of the system. 
Two classes of spin systems have been investigated: 
assemblies of atoms having nuclear magnetic dipole 
moments and crystalline compounds containing mag
netic ions. The nuclear magnetic case, for which the 
spin absorption frequencies are of the order 104 cps, 
has been discussed by Anderson.1 Magnetic ions in 
concentrated magnetic salts have spin absorption fre
quencies of the order 109 cps, and have been the subject 
of a large number of investigations,2-7 including the 
experiments reported in the present paper. 

* Based upon a thesis submitted to the University of Maryland 
in partial fulfillment of the requirements for the degree of Doctor 
of Philosophy, 1962. 

f Present address: Portland State College, Portland, Oregon. 
1 A. G. Anderson, Phys. Rev. 125, 1517 (1962). 
2 For a review of early work, see C. J. Gorter, Paramagnetic 

Relaxation (Elsevier Publishing Company, New York, 1947); C. J. 
Gorter, Progress in Low Temperature Physics (Interscience Pub
lishers, Inc., New York, 1957), Vol. II, p. 267. 

stating that this inequality will be justified through an 
explicit calculation of the function <£. The justification 
for [24c] is contained in their Eq. [33a] which indicates 
that [24c] is correct, but only for | £ | <a. But they have 
already used [24c] for | £ | greater than a in order to 
deduce an approximate integral equation for </>, [26b]. 
Thus their treatment is not internally consistent. 

On the basis of our results it may be shown that /(£) 
decreases as £~2 for large £; on the other hand, /0(£) 
decreases exponentially. Hence, in fact, [24c] does not 
hold for £>a, and the integral equation [26b] is not 
correct. 

In paramagnetic salts, for the case of small or zero 
static magnetic fields, and at frequencies much higher 
than the reciprocal of the spin-lattice relaxation time 
( T L _ 1 < 1 0 8 cps at liquid-helium temperatures), the ab
sorption of energy from the oscillating field is a mani
festation of the spin-spin relaxation processes. Even a 
weak spin-lattice interaction is sufficient to maintain 
the spin system in good thermal contact with the lattice, 
but slight departures from equilibrium completely 
internal to the spin system give rise to a quadrature 
component of the magnetization x". The resulting spin 
absorption, proportional to %"> niay be thought of as 
arising from transitions among energy levels each of 
which corresponds to a stationary state of the crystal 
as a whole. The frequency dependence of x" is expressed 
in the form 

x" = hTTlvf(v)/kTl, (1) 

3 L. J. Smits, H. E. Derksen, J. C. Verstelle, and C. T. Gorter, 
Physica 22, 773 (1956). 

4 J. C. Verstelle, G. W. J. Drewes, and C. J. Gorter, Physica 24, 
632 (1958). 

5 H. Hadders, P. R. Locher, and C. J. Gorter, Physica 24, 839 
(1958). 

6 P. R. Locher and C. J. Gorter, Physica 27, 997 (1961). 
7 P. R. Locher and C. J. Gorter, Physica 28, 797 (1962); P. R. 

Locher, thesis, Leiden, 1962 (unpublished), 
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The spin absorption spectrum in the absence of a static magnetic field has been observed in several para
magnetic salts at liquid-helium temperatures. The absorptive component of the complex susceptibility x " 
was measured as a continuous function of frequency over the range 130-4000 Mc/sec by observing the 
influence of powdered samples on the transmission of a tunable coaxial resonant cavity. Exchange narrowing 
in qualitative agreement with the theory of Wright was observed in cupric salts. Moments of the shape 
functions obtained by expressing the results in terms of an empirical, fitted function yield, on the basis of 
the theories of Wright and Caspers, values of the exchange constant A of 3.3 and 3.7 for the cupric potassium 
and cupric ammonium Tutton salts, respectively. The cupric salt experimental curves are lower and broader 
than the curves proposed by Locher and Gorter. The absorption band in chromic potassium alum has a 
"flat-topped" appearance, and a width approximately three times the dipolar relaxation frequency v0. No 
temperature dependence of the shape functions was observed. 


